## 10.5:

We can derive that

$$
\frac{\partial S(q, \alpha, t)}{\partial t}=-\frac{1}{2} m \omega^{2}\left(\alpha^{2}+q^{2}-2 \alpha q \cos \omega t\right) \csc ^{2} \omega t
$$

and

$$
\frac{\partial S(q, \alpha, t)}{\partial q}=m \omega(q \cos \omega t-a) \csc \omega t .
$$

It is obvious that we can write the Hamiltonian as,

$$
H\left(q, \frac{\partial S}{\partial q}, t\right)=\frac{1}{2} m \omega^{2}\left[(q \cos \omega t-a)^{2} \csc ^{2} \omega t+q^{2}\right] .
$$

Therefore, the principal function satisfies,

$$
\frac{\partial S(q, \alpha, t)}{\partial t}+H\left(q, \frac{\partial S}{\partial q}, t\right)=0
$$

which is a solution of the Hamiltonian-Jacobi. And clearly, by the Hamilton's equations,

$$
\begin{gathered}
\dot{p}=-\frac{\partial H}{\partial q}=-m \omega^{2} q, \\
\dot{q}=\frac{\partial H}{\partial p}=\frac{p}{m} .
\end{gathered}
$$

It leads that

$$
\ddot{q}+\omega^{2} q=0 .
$$

Thus, this function generates the solution to the motion of the harmonic oscillator.

### 10.11:

We have

$$
\dot{z}=-\frac{4 \pi \dot{x}}{\lambda} A \cos \frac{2 \pi x}{\lambda} \sin \frac{2 \pi x}{\lambda} .
$$

Thus,

$$
L=\frac{1}{2} m \dot{x}^{2}\left(1+\frac{16 \pi^{2} A^{2}}{\lambda^{2}} \cos ^{2} \frac{2 \pi x}{\lambda} \sin ^{2} \frac{2 \pi x}{\lambda}\right)-m g \cos ^{2} \frac{2 \pi x}{\lambda} .
$$

And as a result, we have

$$
p=\frac{\partial L}{\partial \dot{x}}=m \dot{x}\left(1+\frac{16 \pi^{2} A^{2}}{\lambda^{2}} \cos ^{2} \frac{2 \pi x}{\lambda} \sin ^{2} \frac{2 \pi x}{\lambda}\right) .
$$

And

$$
H=p \dot{x}-L=\frac{p^{2}}{2 m\left(1+\frac{16 \pi^{2} A^{2}}{\lambda^{2}} \cos ^{2} \frac{2 \pi x}{\lambda} \sin ^{2} \frac{2 \pi x}{\lambda}\right)}+m g A \cos ^{2} \frac{2 \pi x}{\lambda} .
$$

And naturally, we have

$$
\frac{d x}{d t}=\frac{\partial H}{\partial p}=\frac{p}{m\left(1+\frac{4 \pi^{2} A^{2}}{\lambda^{2}} \sin ^{2} \frac{4 \pi x}{\lambda}\right)} .
$$

$$
\frac{d p}{d t}=-\frac{\partial H}{\partial x}=-\frac{p^{2}}{m\left(1+\frac{4 \pi^{2} A^{2}}{\lambda^{2}} \sin ^{2} \frac{4 \pi x}{\lambda}\right)^{2}} \frac{4 \pi^{2} A^{2} \sin \frac{4 \pi x}{\lambda} \cos \frac{4 \pi x}{\lambda}}{\lambda^{2}}-\frac{4 \pi}{\lambda} m g A \cos \frac{2 \pi x}{\lambda} \sin \frac{2 \pi x}{\lambda} .
$$

This is the evolution of the system in the phase space.

### 10.14:

The Hamiltonian is

$$
H\left(x, \frac{\partial S}{\partial x}\right)=\frac{1}{2 m}\left(\frac{\partial S}{\partial x}\right)-\frac{k}{|x|}
$$

The Hamilton-Jacobi equation yields

$$
\frac{1}{2 m}\left(\frac{\partial S}{\partial x}\right)-\frac{k}{|x|}+\frac{\partial S}{\partial t}=0
$$

Because the energy is conserved, we can take the principal function as the form

$$
S=W(x, E)-E t+C .
$$

Providing the energy is negative,

$$
\frac{\partial W}{\partial x}=\sqrt{2 m}\left[\frac{k}{|x|}-|E|\right]^{1 / 2}
$$

The turning point is at $x= \pm k /|E|$, and the action variable is,

$$
J=\oint p d q=4 \sqrt{2 m} \int_{0}^{k /|E|}\left[\frac{k}{x}-E\right]^{1 / 2} d x=2 \pi k \sqrt{\frac{2 m}{|E|}} .
$$

Then we can express the Hamiltonian as

$$
H=E=-\frac{8 m \pi^{2} k^{2}}{J^{2}}
$$

The period is

$$
T=1 / \nu=\left(\frac{\partial H}{\partial J}\right)^{-1}=\left(\frac{16 m \pi^{2} k^{2}}{J^{3}}\right)^{-1}=\frac{\pi k \sqrt{2 m}}{|E|^{3 / 2}} .
$$

### 10.17:

The Hamiltonian of projectile is given by

$$
H=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+m g y .
$$

The Hamiltonian-Jacobi equation reads

$$
\frac{1}{2 m}\left(\frac{\partial S}{\partial x}\right)^{2}+\frac{1}{2 m}\left(\frac{\partial S}{\partial y}\right)^{2}+m g y+\frac{\partial S}{\partial t}=0
$$

Since the Hamiltonian does not depend on time explicitly, we can write the principal function as

$$
S=-E t+W(x, y)+C
$$

Therefore, it turns out

$$
\frac{1}{2 m}\left(\frac{\partial W}{\partial x}\right)^{2}+\frac{1}{2 m}\left(\frac{\partial W}{\partial y}\right)^{2}+m g y=E
$$

Since the Hamiltonian can be decomposed as

$$
H=f_{1}\left(x, \frac{\partial W}{\partial x}\right)+f_{2}\left(y, \frac{\partial W}{\partial y}\right)
$$

we can also decompose $W$ as

$$
W=W_{1}(x)+W_{2}(y) .
$$

We have

$$
\begin{gathered}
\frac{1}{2 m}\left(\frac{d W_{1}}{d x}\right)^{2}=\alpha_{1} \Longrightarrow W_{1}= \pm \sqrt{2 \alpha_{1} m} x \\
\frac{1}{2 m}\left(\frac{d W_{2}}{d y}\right)^{2}+m g y= \\
\alpha_{2} \Longrightarrow W_{2}= \pm \frac{2 \sqrt{2}\left(\alpha_{2}-m g y\right)^{2}}{3 g \sqrt{m\left(\alpha_{2}-m g y\right)}}, \\
\alpha_{1}+\alpha_{2}=E
\end{gathered}
$$

Therefore, the principal function is

$$
S=-E t \pm \sqrt{2 \alpha_{1} m} x \pm \frac{2 \sqrt{2}\left(\alpha_{2}-m g y\right)^{2}}{3 g \sqrt{m\left(\alpha_{2}-m g y\right)}}+C .
$$

We can derive

$$
\begin{gathered}
\beta_{1}=\frac{\partial S}{\partial \alpha_{1}}=-t \pm \sqrt{\frac{m}{2 \alpha_{1}}} x \Longrightarrow x= \pm \sqrt{\frac{2 \alpha_{1}}{m}}\left(\beta_{1}+t\right), \\
\beta_{2}=\frac{\partial S}{\partial \alpha_{2}}=-t \pm \frac{\sqrt{2 m}}{m g} \sqrt{\alpha_{2}-m g y} \Longrightarrow y=\frac{\alpha_{2}}{m g}-\frac{g}{2}\left(\beta_{2}+t\right)^{2} .
\end{gathered}
$$

Putting initial conditions, we get

$$
\begin{gathered}
x=v_{0} t \cos \alpha, \\
y=v_{0} t \sin \alpha-\frac{1}{2} g t^{2} .
\end{gathered}
$$

### 10.26:

The Lagrangian is

$$
L=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\psi \sin ^{2} \theta\right)+\frac{1}{2} I_{3}(\dot{\phi}+\psi \cos \theta)^{2}-M g l \cos \theta .
$$

The conjugate momenta are

$$
\begin{gathered}
p_{\theta}=I_{1} \dot{\theta} \\
p_{\psi}=I_{3}(\dot{\psi}+\dot{\phi} \cos \theta) \\
p_{\phi}=I_{3} \dot{\psi} \cos \theta+\dot{\phi}\left(I_{1} \sin ^{2} \theta+I_{3} \cos ^{2} \theta\right) .
\end{gathered}
$$

After that, we have

$$
E=\frac{1}{2} I_{3} \omega_{3}^{2}+\frac{I_{1}}{2} \frac{(b-a \cos \theta)^{2}}{\sin ^{2} \theta}+M g l \cos \theta .
$$

Where

$$
\begin{aligned}
& I_{1} a=p_{\phi}, \\
& I_{2} b=p_{\psi} .
\end{aligned}
$$

We assume that

$$
\alpha=\frac{I_{1}}{2} \frac{(b-a \cos \theta)^{2}}{\sin ^{2} \theta}+M g l \cos \theta .
$$

After separation of variables, we have

$$
W=W(\theta)+W(\psi)+W(\phi) .
$$

Where

$$
\begin{aligned}
& W(\psi)=I_{1} a \psi \\
& W(\phi)=I_{1} b \phi
\end{aligned}
$$

And

$$
W(\theta)=\int d \theta \sqrt{2 I_{1} \alpha-I_{1}^{2} \frac{(b-a \cos \theta)^{2}}{\sin ^{2} \theta}-2 I_{1} M g l \cos \theta} .
$$

And

$$
\begin{gathered}
t+\beta_{1}=\frac{\partial W}{\partial \alpha} \\
\beta_{2}=\frac{\partial W}{\partial a} \\
\beta_{3}=\frac{\partial W}{\partial b}
\end{gathered}
$$

And after rearranging parameters, we have

$$
\dot{u}^{2}=\left(1-u^{2}\right)(\alpha-\beta u)-(b-a u)^{2} .
$$

Where

$$
\begin{gathered}
\alpha=\frac{2 E-I_{3} \omega_{3}^{2}}{I_{1}}, \\
\beta=\frac{2 M g l}{I_{1}} .
\end{gathered}
$$

