8.9:

It is straightforward to write down that,

$$
S=\int_{t_{1}}^{t_{2}}\left(p_{i} d q_{i}-H d t-\lambda_{k} \psi_{k} d t\right) .
$$

Then we can define $H^{\prime}=H+\lambda_{k} \psi_{k}$, the canonical equations become,

$$
\begin{aligned}
\dot{q}_{i} & =\frac{\partial H^{\prime}}{\partial p_{i}} \\
\dot{p}_{i} & =-\frac{\partial H^{\prime}}{\partial q_{i}}
\end{aligned}
$$

That is,

$$
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}+\sum_{k} \lambda_{k} \frac{\partial \psi_{k}}{\partial p_{i}}=\dot{q}_{i} \\
& \frac{\partial H}{\partial q_{i}}+\sum_{k} \lambda_{k} \frac{\partial \psi_{k}}{\partial q_{i}}=-\dot{p}_{i}
\end{aligned}
$$

Let's take a constraint as $\psi=H\left(q_{1}, \ldots, q_{n+1} ; p_{1}, \ldots, p_{n}\right)+p_{n+1}=0$, we can have

$$
\begin{gathered}
(1+\lambda) \frac{\partial H}{\partial p_{i}}=\dot{q}_{i} \\
(1+\lambda) \frac{\partial H}{\partial q_{i}}=-\dot{p}_{i} \\
\lambda=\lambda \frac{\partial \psi}{\partial p_{n+1}}=\dot{q}_{n+1}=\frac{d t}{d \theta}
\end{gathered}
$$

8.16:

(a) By the Hamilton equation, we have

$$
\begin{aligned}
& \dot{q}=\frac{\partial H}{\partial p}=\frac{p}{\alpha}-b q e^{-\alpha t} \\
& \Longrightarrow p=\alpha\left(\dot{q}+b q e^{-\alpha t}\right) .
\end{aligned}
$$

The Lagrangian is

$$
L=p \dot{q}-H=L=\frac{\alpha}{2} \dot{q}^{2}+\alpha b q e^{-\alpha t} \dot{q}-\frac{\alpha a b}{2} q^{2} e^{-\alpha t}-\frac{k q^{2}}{2} .
$$

(b) (c) It is easy to find that

$$
L=\frac{\alpha}{2} \dot{q}^{2}-\frac{k}{2} q^{2}+\frac{d}{d t}\left(\frac{1}{2} a b q^{2} e^{-\alpha t}\right) .
$$

Therefore we can take

$$
L^{\prime}=\frac{\alpha}{2} \dot{q}^{2}-\frac{k}{2} q^{2},
$$

and

$$
H^{\prime}=\frac{\alpha}{2} \dot{q}^{2}+\frac{k}{2} q^{2}
$$

The two Hamiltonians have the same physical meaning.

8.26:

(a) Take the Lagrangian as,

$$
L=T-V=\frac{1}{2} m \dot{x}^{2}-\frac{k_{1}}{2} x^{2}-\frac{k_{2}}{2}(a-x)^{2} .
$$

Therefore the Hamiltonian is,

$$
H=T+V=\frac{1}{2} m \dot{x}^{2}+\frac{k_{1}}{2} x^{2}+\frac{k_{2}}{2}(a-x)^{2} .
$$

There is no explicit time dependence of Hamiltonian. Thus the Hamiltonian and energy is conserved.
(b) Just substituting x with Q , we get,

$$
L=\frac{1}{2} m(\dot{Q}+\omega b \cos \omega t)^{2}-\frac{k_{1}}{2}(Q+b \sin \omega t)^{2}-\frac{k_{2}}{2}(a-Q-b \sin \omega t)^{2} .
$$

Now the canonical momentum is,

$$
P=\frac{\partial L}{\partial \dot{Q}}=m(\dot{Q}+\omega b \cos \omega t)
$$

Then the Hamiltonian is,

$$
H=P \dot{Q}-L=\frac{1}{2} m \dot{Q}^{2}-\frac{1}{2} \omega^{2} b^{2} \cos ^{2} \omega t+\frac{k_{1}}{2}(Q+b \sin \omega t)^{2}+\frac{k_{2}}{2}(a-Q-b \sin \omega t)^{2} .
$$

Now there is explicit time dependence of Hamiltonian, which is not conserved. However, the energy is conserved.

8.32:

Now we have

$$
f(U)=\dot{U}^{2}=\left(1-U^{2}\right)(\alpha-\beta U)-(b-a U)^{2}
$$

Where

$$
U=\cos \theta
$$

And θ is the nutation angle. Now we will set that

$$
U=u_{0}+u
$$

Where u_{0} is the steady state, and u is infinitesimal. Now we have

$$
\beta u_{0}^{3}-\left(\alpha+a^{2}\right) u_{0}^{2}+(2 a b-\beta) u_{0}+\alpha-b^{2}=0
$$

As well as

$$
3 \beta u_{0}^{2}-2\left(\alpha+a^{2}\right) u_{0}+2 a b-\beta=0
$$

At this time, we have

$$
\ddot{u}+\left(\alpha+a^{2}-3 \beta u_{0}\right) u=0
$$

And notice that

$$
\begin{gathered}
\alpha=\frac{2 M g l \cos \theta_{0}}{I_{1}} \\
\beta=\frac{2 M g l}{I_{1}} \\
a=\frac{I_{3}}{I_{1}} \dot{\psi}_{0} \\
b=\frac{I_{3}}{I_{1}} \dot{\psi}_{0} \cos \theta_{0}
\end{gathered}
$$

So the top is nutating as a hormonic motion. That is,

$$
\omega=\sqrt{\alpha+a^{2}-3 \beta \cos \theta_{0}}=\sqrt{\frac{I_{3}^{2}}{I_{1}^{2}} \psi_{0}^{2}-\frac{M g l \cos \theta_{0}}{I_{1}}}
$$

