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9.22:

We want to find a most general form of P1 and P2 for this point transformation,
Q1

Q2

P1

P2

 =


q21

q1 + q2
P1 (q, p)
P2 (q, p)

 .
We can define,

F2(q1, P1, q2, P2) = q21P1 + (q1 + q2)P2 + g(q1, q2).

Since this transformation is canonical, we have,

p1 =
∂F2

∂q1
= 2q1P1 + P2 +

∂g

∂q1
,

p2 =P2 +
∂g

∂q2
.

Inverting them, we find,

P1 =
p1 − p2
2q1

+
1

2q1
(
∂g

∂q2
− ∂g

∂q1
),

P2 =p2 −
∂g

∂q2
.

We want to choose a function g(q1, q2) such that the Hamiltonian is cyclic in Q1 and Q2,

H ′(P1, P2) = H = (
p1 − p2
2q1

)2 + p2 + (q1 + q2)
2

=⇒ H ′ = [P1 −
1

2q1
(
∂g

∂q2
− ∂g

∂q1
)]2 + P2 +

∂g

∂q2
+ (2q1 + q2)

2.

We can choose,
g(q1, q2) = −1

3
(q1 + q2)

2.

Then the new Hamiltonian is,
H ′ = P 2

1 + P2.

Therefore,
Q̇1 =2P1 =⇒ Q1 = 2P1t+Q10,

Q̇2 =1 =⇒ Q2 = t+Q20,

Ṗ1 =0 =⇒ P1 = Const,

Ṗ2 =0 =⇒ P2 = Const.

And,

q1 =
√
q210 + 2P1t,

q2 =q10 + q20 + t−
√
q210 + 2P1t,

p1 =

√
q210 + 2P1t

q10
(p10 − p20) + p20 − 2(q10 + q20),

p2 =p20 − 2(q10 + q20)t− t2.
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9.25:

(a) By Hamilton’s equation of motion, we have,

q̇ =
∂H

∂p
= pq4,

ṗ =− ∂H

∂q
= −2p2q4 +

1

q3
.

Since the Hamiltonian doesn’t depend on t explicitly, energy is conserved.

E =
q̇2

2q4
+

1

2q2
.

With initial conditions q̇(0) = 0, q(0) = q0, we find that,

1

2q20
=

q̇2

2q4
+

1

2q2

=⇒ q =
q0
cos t

(b) What we need to find is,

H ′(Q,P ) = H(q, p) =
1

2
P 2 +

1

2
Q2 =

1

2
p2q4 +

1

2q2
.

It’s obvious to find that,
Q =

1

q
,

P = −pq2.

We can verify that the transformation is canonical, that,

[Q,P ]qp = 1.

For the Hamiltonian, we have,
Q̈+Q = 0 and P = Q̇.

Solve the equations,
Q =

cos t

q0
=

1

q
,

P =
− sin t

q0
= −pq2,

which are agreed with the results in (a).

9.29:

In Kepler’s problem, we can express
a = − k

2E
,

2
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e =

√
1 +

2El2

mk2
,

ω =

√
k

ma3
=

√
− 8E3

mk2
,

ψ = 2arctan

[√
1− e

1 + e
tan

θ

2

]

T =
2π − ψ + e sinψ

ω

where E = 1
2(ṙ

2 + r2θ̇2)− k
r , l = mr2θ̇.

The Poisson brackets are,

[a, e] = − 2mr5θ̇3

k
(
r2θ̇2 + θ̇2

)√
k2+mr6θ̇4+mr4θ̇2θ̇2

k2

[a, ψ] =

2kmr4θ̇2
(
θ̇

√
k2+mr6θ̇4+mr4θ̇2θ̇2

k2
+ 2rθ̇ sin θ

)
(
r2θ̇2 + θ̇2

)√
k2+mr6θ̇4+mr4θ̇2θ̇2

k2

(
2k2 cos θ

√
k2+mr6θ̇4+mr4θ̇2θ̇2

k2
+ 2k2 +mr4θ̇2

(
r2θ̇2 + θ̇2

))

[a, ω] = 0

[a, T ] =

where rd represent ṙ, td represent θ̇, t represent θ.

[e, ψ] =
m2r8ṙθ̇4

(
r2θ̇2 + ṙ2

)
k2
√

k2+mr6θ̇4+mr4ṙ2θ̇2

k2

(
2k2 cos θ

√
k2+mr6θ̇4+mr4ṙ2θ̇2

k2
+ 2k2 +mr4θ̇2

(
r2θ̇2 + ṙ2

))
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[e, ω] =
3mr5θ̇3

√
−(r2θ̇2+ṙ2)

3

k2m

k2
√

k2+mr6θ̇4+mr4ṙ2θ̇2

k2

[ψ, ω] = −
3mr4θ̇2

√
−(r2θ̇2+ṙ2)

3

k2m

(
ṙ

√
k2+mr6θ̇4+mr4ṙ2θ̇2

k2
+ 2rθ̇ sin θ

)
√

k2+mr6θ̇4+mr4ṙ2θ̇2

k2

(
2k2 cos θ

√
k2+mr6θ̇4+mr4ṙ2θ̇2

k2
+ 2k2 +mr4θ̇2

(
r2θ̇2 + ṙ2

))

[ω, T ] =

where rd represent ṙ, td represent θ̇, t represent θ.

[ψ, T ] = very very complicated . . .

[e, T ] = very very complicated . . .

9.30:

(a) Let’s say A and B are 2 constants of motion, we can prove that,

[[A,B],H] = [AB,H ]− [BA,H ] = A[B,H ] + [A,H]B −B[A,H]− [B,H ]A = 0.

Therefore, [A,B] is a constant of motion even when the constants depend upon time explicitly.
(b) We can show that, if,

[F,H] =
∂F

∂t
,

[H,H] =
∂H

∂t
= 0,

then,
[
∂nF

∂tn
,H] =

∂n

∂tn
[F,H] =

∂

∂t

∂nF

∂tn
.
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Therefore, the nth derivative of F is a constant of motion. (c) In this case, the Hamiltonian,

H =
p2

2m
.

The Poisson bracket,
[H,F ] =

∂H

∂x

∂F

∂p
− ∂H

∂p

∂F

∂x
= − p

m
,

and the partial derivative of F is,
∂F

∂t
= − p

m
= [H,F ].

Therefore, F is a constant of motion.
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