9.22:

We want to find a most general form of P_{1} and P_{2} for this point transformation,

$$
\left[\begin{array}{c}
Q_{1} \\
Q_{2} \\
P_{1} \\
P_{2}
\end{array}\right]=\left[\begin{array}{c}
q_{1}^{2} \\
q_{1}+q_{2} \\
P_{1}(q, p) \\
P_{2}(q, p)
\end{array}\right] .
$$

We can define,

$$
F_{2}\left(q_{1}, P_{1}, q_{2}, P_{2}\right)=q_{1}^{2} P_{1}+\left(q_{1}+q_{2}\right) P_{2}+g\left(q_{1}, q_{2}\right) .
$$

Since this transformation is canonical, we have,

$$
\begin{aligned}
& p_{1}=\frac{\partial F_{2}}{\partial q_{1}}=2 q_{1} P_{1}+P_{2}+\frac{\partial g}{\partial q_{1}}, \\
& p_{2}=P_{2}+\frac{\partial g}{\partial q_{2}} .
\end{aligned}
$$

Inverting them, we find,

$$
\begin{aligned}
& P_{1}=\frac{p_{1}-p_{2}}{2 q_{1}}+\frac{1}{2 q_{1}}\left(\frac{\partial g}{\partial q_{2}}-\frac{\partial g}{\partial q_{1}}\right), \\
& P_{2}=p_{2}-\frac{\partial g}{\partial q_{2}} .
\end{aligned}
$$

We want to choose a function $g\left(q_{1}, q_{2}\right)$ such that the Hamiltonian is cyclic in Q_{1} and Q_{2},

$$
\begin{gathered}
H^{\prime}\left(P_{1}, P_{2}\right)=H=\left(\frac{p_{1}-p_{2}}{2 q_{1}}\right)^{2}+p_{2}+\left(q_{1}+q_{2}\right)^{2} \\
\Longrightarrow H^{\prime}=\left[P_{1}-\frac{1}{2 q_{1}}\left(\frac{\partial g}{\partial q_{2}}-\frac{\partial g}{\partial q_{1}}\right)\right]^{2}+P_{2}+\frac{\partial g}{\partial q_{2}}+\left(2 q_{1}+q_{2}\right)^{2} .
\end{gathered}
$$

We can choose,

$$
g\left(q_{1}, q_{2}\right)=-\frac{1}{3}\left(q_{1}+q_{2}\right)^{2} .
$$

Then the new Hamiltonian is,

$$
H^{\prime}=P_{1}^{2}+P_{2} .
$$

Therefore,

$$
\begin{aligned}
& \dot{Q_{1}}=2 P_{1} \Longrightarrow Q_{1}=2 P_{1} t+Q_{10}, \\
& \dot{Q}_{2}=1 \Longrightarrow Q_{2}=t+Q_{20} \\
& \dot{P}_{1}=0 \Longrightarrow P_{1}=\text { Const } \\
& \dot{P}_{2}=0 \Longrightarrow P_{2}=\text { Const } .
\end{aligned}
$$

And,

$$
\begin{aligned}
& q_{1}=\sqrt{q_{10}^{2}+2 P_{1} t}, \\
& q_{2}=q_{10}+q_{20}+t-\sqrt{q_{10}^{2}+2 P_{1} t}, \\
& p_{1}=\frac{\sqrt{q_{10}^{2}+2 P_{1} t}}{q_{10}}\left(p_{10}-p_{20}\right)+p_{20}-2\left(q_{10}+q_{20}\right), \\
& p_{2}=p_{20}-2\left(q_{10}+q_{20}\right) t-t^{2} .
\end{aligned}
$$

9.25:

(a) By Hamilton's equation of motion, we have,

$$
\begin{aligned}
& \dot{q}=\frac{\partial H}{\partial p}=p q^{4}, \\
& \dot{p}=-\frac{\partial H}{\partial q}=-2 p^{2} q^{4}+\frac{1}{q^{3}} .
\end{aligned}
$$

Since the Hamiltonian doesn't depend on t explicitly, energy is conserved.

$$
E=\frac{\dot{q}^{2}}{2 q^{4}}+\frac{1}{2 q^{2}} .
$$

With initial conditions $\dot{q}(0)=0, q(0)=q_{0}$, we find that,

$$
\begin{gathered}
\frac{1}{2 q_{0}^{2}}=\frac{\dot{q}^{2}}{2 q^{4}}+\frac{1}{2 q^{2}} \\
\Longrightarrow q=\frac{q_{0}}{\cos t}
\end{gathered}
$$

(b) What we need to find is,

$$
H^{\prime}(Q, P)=H(q, p)=\frac{1}{2} P^{2}+\frac{1}{2} Q^{2}=\frac{1}{2} p^{2} q^{4}+\frac{1}{2 q^{2}} .
$$

It's obvious to find that,

$$
\begin{gathered}
Q=\frac{1}{q} \\
P=-p q^{2} .
\end{gathered}
$$

We can verify that the transformation is canonical, that,

$$
[Q, P]_{q p}=1
$$

For the Hamiltonian, we have,

$$
\ddot{Q}+Q=0 \quad \text { and } \quad P=\dot{Q} .
$$

Solve the equations,

$$
\begin{gathered}
Q=\frac{\cos t}{q_{0}}=\frac{1}{q}, \\
P=\frac{-\sin t}{q_{0}}=-p q^{2},
\end{gathered}
$$

which are agreed with the results in (a).

9.29:

In Kepler's problem, we can express

$$
a=-\frac{k}{2 E}
$$

$$
\begin{gathered}
e=\sqrt{1+\frac{2 E l^{2}}{m k^{2}}}, \\
\omega=\sqrt{\frac{k}{m a^{3}}}=\sqrt{-\frac{8 E^{3}}{m k^{2}}}, \\
\psi=2 \arctan \left[\sqrt{\frac{1-e}{1+e}} \tan \frac{\theta}{2}\right] \\
T=\frac{2 \pi-\psi+e \sin \psi}{\omega}
\end{gathered}
$$

where $E=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{k}{r}, l=m r^{2} \dot{\theta}$.
The Poisson brackets are,

$$
\begin{aligned}
& {[a, e]=-\frac{2 m r^{5} \dot{\theta}^{3}}{k\left(r^{2} \dot{\theta}^{2}+\dot{\theta}^{2}\right) \sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{\theta}^{2} \dot{\theta}^{2}}{k^{2}}}}} \\
& {[a, \psi]=\frac{2 k m r^{4} \dot{\theta}^{2}\left(\dot{\theta} \sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{\theta}^{2} \dot{\theta}^{2}}{k^{2}}}+2 r \dot{\theta} \sin \theta\right)}{\left(r^{2} \dot{\theta}^{2}+\dot{\theta}^{2}\right) \sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{\theta}^{2} \dot{\theta}^{2}}{k^{2}}}\left(2 k^{2} \cos \theta \sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{\theta}^{2} \dot{\theta}^{2}}{k^{2}}}+2 k^{2}+m r^{4} \dot{\theta}^{2}\left(r^{2} \dot{\theta}^{2}+\dot{\theta}^{2}\right)\right)}} \\
& {[a, \omega]=0} \\
& \text { Out[54] }=-\left(2 r ^ { 4 } t d ^ { 2 } (r d ^ { 2 } + r ^ { 2 } t d ^ { 2 }) ^ { 2 } \left(-k^{2} r d \sqrt{\frac{k^{2}+m r^{4} r d^{2} t d^{2}+m r^{6} t d^{4}}{k^{2}}}+r d\left(k^{2}+m r^{4} t d^{2}\left(r d^{2}+r^{2} t d^{2}\right)\right) \operatorname{Cos}\left[2 \operatorname{ArcTan}\left[\frac{\left.1-\sqrt{1+\frac{m r^{4} t d^{2}\left(r d^{2}+r^{2} t d^{2}\right)}{k^{2}}}\right) \operatorname{Tan}\left[\frac{t}{2}\right]}{1+\sqrt{1+\frac{m r^{4} t d^{2}\left(r d^{2}+r^{2} t d^{2}\right)}{k^{2}}}}\right]\right]+\right.\right. \\
& r t d\left\{-2 k^{2} \sin [t]+2 k^{2} \sqrt{\frac{k^{2}+m r^{4} r d^{2} t d^{2}+m r^{6} t d^{4}}{k^{2}}} \sin \left[t-2 \operatorname{ArcTan}\left[\frac{\left.1-\sqrt{1+\frac{m r^{4} t d^{2}\left(r d^{2}+r^{2} t d^{2}\right)}{k^{2}}}\right) \operatorname{Tan}\left[\frac{t}{2}\right]}{1+\sqrt{1+\frac{m r^{4} t d^{2}\left(r d^{2}+r^{2} t d^{2}\right)}{k^{2}}}}\right]\right]-\right. \\
& \left.\left.\left(2 k^{2}+m r^{4} r d^{2} t d^{2}+m r^{6} t d^{4}\right) \sin \left[2 \operatorname{ArcTan}\left[\frac{\left.1-\sqrt{1+\frac{m r^{4} t d^{2}\left(r d^{2}+r^{2} t d^{2}\right)}{k^{2}}}\right) \operatorname{Tan}\left[\frac{t}{2}\right]}{1+\sqrt{1+\frac{m r^{4} t d^{2}\left(r d^{2}+r^{2} t d^{2}\right)}{k^{2}}}}\right]\right]\right)\right] / \\
& {[a, T]=}
\end{aligned}
$$

where rd represent \dot{r}, td represent $\dot{\theta}, \mathrm{t}$ represent θ.

$$
[e, \psi]=\frac{m^{2} r^{8} \dot{r}^{4}\left(\dot{\theta}^{4} \dot{\theta}^{2}+\dot{r}^{2}\right)}{k^{2} \sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{r}^{2} \dot{\theta}^{2}}{k^{2}}}\left(2 k^{2} \cos \theta \sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{r}^{2} \dot{\theta}^{2}}{k^{2}}}+2 k^{2}+m r^{4} \dot{\theta}^{2}\left(r^{2} \dot{\theta}^{2}+\dot{r}^{2}\right)\right)}
$$

$$
\begin{gathered}
{[e, \omega]=\frac{3 m r^{5} \dot{\theta}^{3} \sqrt{-\frac{\left(r^{2} \dot{\theta}^{2}+\dot{r}^{2}\right)^{3}}{k^{2} m}}}{k^{2} \sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{r}^{2} \dot{\theta}^{2}}{k^{2}}}}} \\
{[\psi, \omega]=-\frac{3 m r^{4} \dot{\theta}^{2} \sqrt{-\frac{\left(r^{2} \dot{\theta}^{2}+\dot{r}^{2}\right)^{3}}{k^{2} m}}\left(\dot{r} \sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{r}^{2} \dot{\theta}^{2}}{k^{2}}}+2 r \dot{\theta} \sin \theta\right)}{\sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{r}^{2} \dot{\theta}^{2}}{k^{2}}}\left(2 k^{2} \cos \theta \sqrt{\frac{k^{2}+m r^{6} \dot{\theta}^{4}+m r^{4} \dot{r}^{2} \dot{\theta}^{2}}{k^{2}}}+2 k^{2}+m r^{4} \dot{\theta}^{2}\left(r^{2} \dot{\theta}^{2}+\dot{r}^{2}\right)\right)}}
\end{gathered}
$$

where rd represent \dot{r}, td represent $\dot{\theta}, \mathrm{t}$ represent θ.

$$
\begin{aligned}
& {[\psi, T]=\text { very very complicated } \ldots} \\
& {[e, T]=\text { very very complicated } \ldots}
\end{aligned}
$$

9.30:

(a) Let's say A and B are 2 constants of motion, we can prove that,

$$
[[A, B], H]=[A B, H]-[B A, H]=A[B, H]+[A, H] B-B[A, H]-[B, H] A=0
$$

Therefore, $[A, B]$ is a constant of motion even when the constants depend upon time explicitly. (b) We can show that, if,

$$
\begin{gathered}
{[F, H]=\frac{\partial F}{\partial t}} \\
{[H, H]=\frac{\partial H}{\partial t}=0,}
\end{gathered}
$$

then,

$$
\left[\frac{\partial^{n} F}{\partial t^{n}}, H\right]=\frac{\partial^{n}}{\partial t^{n}}[F, H]=\frac{\partial}{\partial t} \frac{\partial^{n} F}{\partial t^{n}} .
$$

Therefore, the nth derivative of F is a constant of motion. (c) In this case, the Hamiltonian,

$$
H=\frac{p^{2}}{2 m}
$$

The Poisson bracket,

$$
[H, F]=\frac{\partial H}{\partial x} \frac{\partial F}{\partial p}-\frac{\partial H}{\partial p} \frac{\partial F}{\partial x}=-\frac{p}{m},
$$

and the partial derivative of F is,

$$
\frac{\partial F}{\partial t}=-\frac{p}{m}=[H, F] .
$$

Therefore, F is a constant of motion.

