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Problem

Solution:
Firstly, we write down the Lagrangian of each ball, for the top ball

L =
1

2
Iω2 −mg

2
√
3

3
R,

and for the other 3 bottom balls which are symmetric,

L′ =
1

2
mr2Ω2 +

1

2
I(ω2

1 + ω2
2 + ω2

3),

where I = 2
5mR2 and r = 2

√
3

3 R. Then by the Euler’s equations, we have

L̇ = M + L× Ω,

that are

Iω̇1 = f1R cos θ + Iω2Ω, (x direction) (1)

Iω̇2 = f2R− Iω1Ω, (y direction) (2)

Iω̇3 = f1R sin θ, (z direction) (3)

where θ is half of the top angle of the tetrahedron satisfing sin θ =
√
3
3 and cos θ =

√
6
3 , f1 and f2 are

respectively the horizontal and vertical component of friction.
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Secondly, using the Lagrangian’s equation, we can derive

mg = 3N cos θ + 3f2 sin θ, (z direction equilibrium for the top ball) (4)

ω̇ = −3f1R sin θ, (rotation equation for the top ball) (5)

mrΩ̇ = f1. (rotation equation for the system) (6)

We can calculate the relative velocity of the meeting point. Denoting its horizontal and vertical component
as v1 and v2 respectively, we have

v1 = (Ωr − ω1R cos θ − ω3R sin θ)− ωR sin θ,

and
v2 = ω2R.

Then we have the constraint on the friction

f1
f2

=
v1
v2

=
(Ωr − ω1R cos θ − ω3R sin θ)− ωR sin θ

ω2R
, (7)

and the relationship between friction and constraining force

f =
√
f2
1 + f2

2 = µN. (8)

Now we have 8 unknowns, f1, f2, N, ω, ω1, ω2, ω3,Ω and 8 equations. It is worth noting that the above
discussion is under the premise of balls slipping on the meeting point.

We then solve these equations numerically. We set the initial condition as

m = 5kg,

g = 9.8m/s2,

R = 0.2m,

µ = 0.1,

ω0 = 7s−1,

ω10 = ω20 = ω30 = Ω0 = 0.

We first consider the evolution of angular velocity with slipping. After that we can consider the pure rolling
condition and set a cut-off on the results.

we can use this code in Fig. 1 of Mathematica to numerically solve angular velocities.
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Figure 1: The code of calculating slipping state

The numerical result is showed in the following Fig. 2,
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Figure 2: The numerical results of angular velocities with slipping

Then we can combine them together as one and do some mathematical treatment as shown in Fig. 3. By
this figure, we can see the condition for pure rolling.
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Figure 3: The numerical results of angular velocities combining in one figure

The pure rolling condition are v1 = 0 and v2 = 0, that mean ω1 = ω2 and 2Ω = ω + ω3. From the
above figure, we can point out that the condition roughly satisfied occasionally, such as t = 7.2 ∼ 7.6s or
t = 10 ∼ 10.4s. Providing the time long enough, we can finally get some point that the system stop slipping.
Let’s say it happens at t = 7.25s, then we cut off the value after that moment and get the final result as
following Fig. 4. In fact, ω1 and ω2 should both be 0 after cutting-off, but we allow a little error here. As we
mentioned before, the pure rolling condition is roughly satisfied, not precisely.
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Figure 4: The numerical results of angular velocities after cutting-off
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